本文共 5894 字,大约阅读时间需要 19 分钟。
目的
说明hadoop程序开发过程
前提条件
ubuntu或同类OS
java1.6.0_45
eclipse-indigo
hadoop-0.20.2
hadoop-0.20.2-eclipse-plugin.jar
各项版本一定要匹配,否则出了问题都不知道是什么原因。
配置
配置Java
配置分布式Hadoop
伪分布式与分布式有两点主要区别:
在namenode节点配置完成hadoop以后,需要用scp把hadoop复制到datanode节点,为了方便,最好全部机器的路径都是一样的,比如都在/opt/hadoop-0.20.2中。
conf目录下的masters文件要把默认的localhost改成namenode节点的主机名或IP地址,Slaves文件中,要把localhost改成datanode节点的主机名或IP
eclipse的hadoop插件配置
hadoop-0.20.2-eclipse-plugin.jar是一个 eclipse中的hadoop插件。
它的作用是实现了HDFS的可视化操作,如果没有它,就要在大量地在终端输入命令,每个命令都是以bin/hadoop dfs开头。
如果你是新手,可能还觉得很新鲜,如果很熟悉命令的话,就会觉得很烦。新手总会变成老手,所以这个插件还是有必要的。
下面简单说一下配置过程:
eclipse和hadoop-eclipse-plugin这套插件的版本要求非常高,一定要高度匹配才能用。另一篇博文写了一部分对应关系:https://www.cnblogs.com/Sabre/p/10621064.html
1.下载hadoop-0.20.2-eclipse-plugin.jar,自行搜索。官网不太容易找旧版本。
2.把此jar放到eclipse插件目录下,一般是plugins目录
重新启动eclipse,如果版本正确,此时在eclipse中的project exporer中应该可以看到DFS Locations项。如果没有出现,很可能是版本的问题。
3.配置Hadoop所在目录。eclipse-->window菜单-->Preferences-->Hadoop Map/Reduce,右侧输入或选择你的Hadoop目录
4.显示Map/Reduce Locations窗口。eclipse-->window菜单-->Open Perspective-->Other,选择蓝色的小象图标Map/Reduce,会在下面出黄色的小象窗口,Map/Reduce Locations
5.配置Hadoop Location。Map/Reduce Locations中右键,New Hadoop Location,出现配置窗口,location name随便你写。下面的Map/Reduce Master框中的host,如果是分布式就用IP或主机名,不要用默认的localhost。port改成9000。DFS Master框中的Use M/R Master host默认打勾保持不变,下面的Port改成9001 。user name 一般默认中不中 ,
至此,eclipse的hadoop插件就配置完成了。
编写程序
以下的程序是从《hadoop实战》中脱胎出来的,之所以说脱胎,是因为原书中的代码缺少很多条件,不加以完善是无法运行的。这本书写得不好,感觉是为了评职称之类的事情,让学生给凑的,里面很多硬伤。之所以还在硬着头皮看下去,是因为多少还是讲了一些东西,同时也挑战一下自己,面对不那么完善的环境时,能否解决问题,而不是一味地寻找更好的教材,这是在豆瓣上写的一篇书评:https://book.douban.com/review/10071283/
1.打开eclipse,新建java项目。右键项目,properties,Java Builder Path,Libraries,Add External JARS,找到hadoop的目录,把根目录下的几个jar包都添加进来。
2.新建类,Score_process.java,复制粘贴以下代码:
packagepkg1;importjava.net.URI;importjava.util.Iterator;importjava.util.StringTokenizer;importorg.apache.hadoop.conf.Configuration;importorg.apache.hadoop.conf.Configured;importorg.apache.hadoop.fs.FileSystem;importorg.apache.hadoop.fs.Path;importorg.apache.hadoop.io.IntWritable;importorg.apache.hadoop.io.LongWritable;importorg.apache.hadoop.io.Text;importorg.apache.hadoop.mapreduce.lib.input.FileInputFormat;importorg.apache.hadoop.mapreduce.lib.input.TextInputFormat;importorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat;importorg.apache.hadoop.mapreduce.lib.output.TextOutputFormat;importorg.apache.hadoop.mapreduce.Job;importorg.apache.hadoop.mapreduce.Mapper;importorg.apache.hadoop.mapreduce.Reducer;importorg.apache.hadoop.util.Tool;importorg.apache.hadoop.util.ToolRunner;public class Score_process extends Configured implementsTool {//内部类Map
public static class Map extends Mapper{//map方法
public void map(LongWritable key, Text value, Context context) throwsjava.io.IOException ,InterruptedException {
System.out.println("key值:" +key);
String line= value.toString();//将输入的纯文本文件的数据转化为string//将输入的数据按行分割
StringTokenizer tokenizerArticle = new StringTokenizer(line, "\n");//分别对每一行进行处理
while(tokenizerArticle.hasMoreTokens()) {//每行按空格划分
StringTokenizer tokenizerLine = newStringTokenizer(tokenizerArticle.nextToken());
String nameString=tokenizerLine.nextToken();
String scoreString=tokenizerLine.nextToken();
Text name= newText(nameString);int scoreInt =Integer.parseInt(scoreString);
context.write(name,new IntWritable(scoreInt));//输出姓名和成绩
}
};
}//内部类Reduce
public static class Reduce extends Reducer{//reduce方法
public void reduce(Text key, java.lang.Iterable values, Context context) throwsjava.io.IOException ,InterruptedException {int sum=0;int count=0;
Iterator iterator =values.iterator();while(iterator.hasNext()) {
sum+=iterator.next().get();
count++;
}int average = (int)sum/count;
context.write(key,newIntWritable(average));
};
}public int run(String[] args) throwsException {
Configuration configuration=getConf();//configuration.set("mapred", "Score_Process.jar");//准备环境,删除已经存在的output2目录,保证输出目录不存在**开始************
final String uri = "hdfs://192.168.1.8:9000/";
FileSystem fs=FileSystem.get(URI.create(uri),configuration);final String path = "/user/grid/output2";boolean exists = fs.exists(newPath(path));if(exists){
fs.delete(new Path(path),true);
}//准备环境,删除已经存在的output2目录,保证输出目录不存在**结束************
Job job= newJob(configuration);
job.setJobName("Score_process");
job.setJarByClass(Score_process.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.setInputPaths(job,new Path(args[0]));//System.out.println(new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));boolean success = job.waitForCompletion(true);return success ? 0:1;
}public static void main(String[] args) throwsException {int ret = ToolRunner.run(newScore_process1(), args);
System.exit(ret);
}
}
以上的代码中,有不少是套路,固定的模板。
Map是处理输入参数中给定的文本文件,处理完毕后,输出到HDFS,供reduce调用。context.write(name, new IntWritable(scoreInt));这一句是关键。
Reduce调用map方法的结果,reduce后,写到OS文件系统。context.write(key, newIntWritable(average));这一句是关键。
整个run方法,需要改的只有setJobName和setJarByClass类的名字,其他的不用动。
整个main方法,不用动。
程序部分基本上就是这样。
编译
终端中输入
javac -classpath /opt/hadoop-0.20.2/hadoop-0.20.2-core.jar -d ~/allTest/ScoreProcessFinal/class ~/workspace-indigo/test5/src/pkg1/Score_process.java
如果没有报错,就说明编译成功。
打包
jar -cvf ~/allTest/ScoreProcessFinal/ScoreProcessFinal.jar -C ~/allTest/ScoreProcessFinal/class .
可以用以下命令查看包里的文件:
jar vtf ~/allTest/ScoreProcessFinal/ScoreProcessFinal.jar
执行
执行可以分为两种方式,一种在eclipse中,另一种在终端。
eclipse中运行
配置运行参数。run configurations,arguments,Program arguments:
文本框中输入:hdfs://host-thinkpad:9000/user/grid/input2 hdfs://host-thinkpad:9000/user/grid/output2
就是输入目录和输出目录,注意中间有个空格。
终端中运行
/opt/hadoop-0.20.2/bin/hadoop jar ~/allTest/ScoreProcessFinal/ScoreProcessFinal.jar pkg1.Score_process1 input2 output2
这就是hadoop开发的全过程框架。
其实在此期间发生了很多各种各样的问题,分别记录在各个博文中了。